Speaker
Description
Sexual dimorphism (SD), sexual differences in traits, represents one of the most remarkable source of biodiversity in the world. In most of species, two sexes play different roles in reproduction and thus are imposed by selection pressures in different forms and strengths. This explains the generality of this phenomenon and the extensive applicability of SD theory in nature. In this talk, I will provide an example demonstrating how sexual differences in the dispersal strategy can influence metapopulation dynamics. We developed a sex-structured two-patch model and specified that two sexes have different decision-making processes according to the accessibility of reproductive resources; in brief, females move to the patch with more breeding sites (i.e. carrying capacity minus local population size) whereas males move to the patch with more mating opportunities (i.e. unmated females). Such assumption is valid given that sex-specific dispersal has been commonly recorded in natural systems. Our simulation results illustrated how sex-specific dispersal increased or decreased local population size through changes in local sex ratio and individual reproductive success; notably, such results were not able to be generated through conventional, asexual metapopulation models. We advocate that incorporating the perspective of SD into population dynamic models are needed and it can advance our knowledge of population dynamics by disclosing detailed mechanisms underlying population processes.