BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CERN//INDICO//EN
BEGIN:VEVENT
SUMMARY:Synchronization of tubular pressure oscillations in coupled nephro
ns
DTSTART;VALUE=DATE-TIME:20180711T010000Z
DTEND;VALUE=DATE-TIME:20180711T013000Z
DTSTAMP;VALUE=DATE-TIME:20241109T204826Z
UID:indico-contribution-113@conferences.maths.unsw.edu.au
DESCRIPTION:Speakers: Hwayeon Ryu (University of Hartford)\nThe kidney pla
ys an essential role in regulating the blood pressure and a number of its
func- tions operate at the functional unit of the kidney\, the nephron. To
understand the impacts of internephron coupling on the overall nephrons
’ dynamics\, we develop a mathematical model of a tubuloglomerular feedb
ack (TGF) system\, a negative feedback mechanism for nephron’s fluid cap
acity. Specifically\, each model nephron represents a rigid thick ascendin
g limb only and is assumed to interact with nearby nephrons through vascul
ar and hemodynamic coupling along the pre-glomerular vasculature. We condu
ct a bifurcation analysis by deriving a characteristic equation obtained v
ia a linearization of the model equations. Numerical solutions for the mod
el equations are consequently obtained to validate the predictions of the
characteristic equation. The model results show that the coupled-TGF syste
m with two different coupling effects can produce in-phase as well as anti
-phase (out-of-phase) synchronization of tubular pressure oscillations in
two coupled nephrons\, as has been observed in experimental studies.\n\nht
tps://conferences.maths.unsw.edu.au/event/2/contributions/113/
LOCATION:University of Sydney New Law School/--102
URL:https://conferences.maths.unsw.edu.au/event/2/contributions/113/
END:VEVENT
END:VCALENDAR