Modelling the argasid tick ($\textit{Ornithodoros moubata}$) life cycle

10 Jul 2018, 10:30
New Law School/--107 (University of Sydney)

New Law School/--107

University of Sydney

Oral Presentation Minisymposium: Women Advancing Mathematical Biology Women advancing mathematical biology


Holly Gaff (Old Dominion University)


The first mathematical models for an argasid tick are developed to explore the dynamics and identify knowledge gaps of these poorly studied ticks. These models focus on Ornithodoros moubata, an important tick species throughout Africa and Europe. Ornithodoros moubata is a known vector for African swine fever (ASF), a catastrophically fatal disease for domesticated pigs in Africa and Europe. In the absence of any previous models for soft-bodied ticks, we propose two mathematical models of the life cycle of O. moubata. One is a continuous-time differential equation model that represents the tick life cycle with two stages, and the second is a discrete-time difference equation model that uses four tick stages.Both models use two host types: small hosts and large hosts, and both models find that either host type alone could support the tick population and that the final tick density is a function of host density. While both models predict similar tick equilibrium values, we observe significant differences in the time to equilibrium. These models provide the basis for developing future models that include disease states to explore infection dynamics and possible management of ASF.

Primary authors

Sara Clifton (University of Illinois at Urbana-Champaign) Courtney Davis (Pepperdine University) Samantha Erwin (North Carolina State University) Gabriela Hamerlinck (BioQUEST Curriculum Consortium, Inc.) Amy Veprauskas (University of Louisiana at Lafayette) Yangyang Wang (Mathematical Biosciences Institute) Wenjing Zhang (Texas Tech University) Holly Gaff (Old Dominion University)

Presentation Materials

There are no materials yet.