BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CERN//INDICO//EN
BEGIN:VEVENT
SUMMARY:Modelling the Endothelial Glycocalyx layer in the microcirculation
using homogenisation
DTSTART;VALUE=DATE-TIME:20180712T054000Z
DTEND;VALUE=DATE-TIME:20180712T060000Z
DTSTAMP;VALUE=DATE-TIME:20241104T112203Z
UID:indico-contribution-450@conferences.maths.unsw.edu.au
DESCRIPTION:Speakers: Tet Chuan Lee (University of Auckland)\nThe Endothel
ial Glycocalyx Layer (EGL) is a porous macromolecular layer that lines the
insides of blood vessels. It is located on the important interface betwee
n the endothelium and flowing blood and as such is believed to play a numb
er of important roles including transducing mechanical signals from flowin
g blood and regulating vessel permeability. Previous work modelling the EG
L at the continuum level has typically assumed that it is a homogenous iso
tropic porous media and that if deformable\; it does so as a linear-elasti
c block. In this work\, we use homogenisation theory to derive a more soph
isticated model of the EGL that takes into account what is known about the
underlying periodic microstructure of the EGL.\n\nHomogenisation theory i
s a method of multiple scales that allows us to exploit the periodicity in
the problem as well as the much smaller length scale (compared to the mac
roscopic scale) over which this periodicity exists. This allows us to deri
ve an overall continuum level model of the EGL that takes into account thi
s microstructure while still retaining a lower level model for the flow ar
ound the microstructure. In deriving this model\, we find that it differs
from other fluid flow models typically obtained from homogenisation theory
as the EGL is only periodic tangentially to the vessel surface and not no
rmally.\n\nThis more sophisticated model allows us to investigate the effe
cts of anisotropy in the model at the continuum level as endowed by the ge
ometry of its microstructure. In addition\, the underlying microstructural
model allows us to obtain measures such as the solid shear stress experie
nced by the endothelium and the torque induced by flow over the EGL that c
annot be directly obtained from previous continuum level models and is an
important measure for functions such as mechanotransduction.\n\nhttps://co
nferences.maths.unsw.edu.au/event/2/contributions/450/
LOCATION:University of Sydney New Law School/--028
URL:https://conferences.maths.unsw.edu.au/event/2/contributions/450/
END:VEVENT
END:VCALENDAR