BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//CERN//INDICO//EN
BEGIN:VEVENT
SUMMARY:Derivation of a fluid-type continuum model for contracting actomyo
sin bundles.
DTSTART;VALUE=DATE-TIME:20180711T020000Z
DTEND;VALUE=DATE-TIME:20180711T023000Z
DTSTAMP;VALUE=DATE-TIME:20220819T201809Z
UID:indico-contribution-15-87@conferences.maths.unsw.edu.au
DESCRIPTION:Speakers: Dietmar Oelz (The University of Queensland)\nStartin
g from a detailed physical model for the interplay of actin filaments\, my
osin motor proteins and cross-linker proteins in a contracting cell divisi
on ring\, we derive a continuum model as a short filament limit of the age
nt based model. The model features highly nontrivial pattern formation and
traveling wave solutions and explains the aggregation of actin and myosin
predicted by the microscopic model as well as the scaling properties that
cause the constant rate of contraction.\n\nhttps://conferences.maths.unsw
.edu.au/event/2/contributions/87/
LOCATION:University of Sydney New Law School/--100
URL:https://conferences.maths.unsw.edu.au/event/2/contributions/87/
END:VEVENT
BEGIN:VEVENT
SUMMARY:Hamilton-Jacobi equations on networks and motion flow models
DTSTART;VALUE=DATE-TIME:20180711T013000Z
DTEND;VALUE=DATE-TIME:20180711T020000Z
DTSTAMP;VALUE=DATE-TIME:20220819T201809Z
UID:indico-contribution-15-14@conferences.maths.unsw.edu.au
DESCRIPTION:Speakers: Adriano Festa (INSA Rouen)\nAfter reviewing the basi
cs about the relation between some motion flow models (pedestrians\, anima
ls\, vehicles) and a class of Hamilton-Jacobi-Bellmann equations on Networ
ks we introduce and discuss some numerical methods for the approximation o
f the solution. Several tests are performed to illustrate the properties p
reviously theoretically presented.\n\nhttps://conferences.maths.unsw.edu.a
u/event/2/contributions/14/
LOCATION:University of Sydney New Law School/--100
URL:https://conferences.maths.unsw.edu.au/event/2/contributions/14/
END:VEVENT
BEGIN:VEVENT
SUMMARY:An anisotropic interaction model for simulating fingerprints
DTSTART;VALUE=DATE-TIME:20180711T003000Z
DTEND;VALUE=DATE-TIME:20180711T010000Z
DTSTAMP;VALUE=DATE-TIME:20220819T201809Z
UID:indico-contribution-15-15@conferences.maths.unsw.edu.au
DESCRIPTION:Speakers: Lisa Maria Kreusser (University of Cambridge)\nMotiv
ated by the formation of fingerprint patterns we consider a class of inte
raction models with anisotropic interaction forces whose orientations depe
nd on an underlying tensor field. This class of models can be regarded as
a generalization of a gradient flow of a nonlocal interaction potential wh
ich has a local repulsion and a long-range attraction structure. In contra
st to isotropic interaction models the anisotropic forces in our class of
models cannot be derived from a potential. The underlying tensor field int
roduces an anisotropy leading to complex patterns which do not occur in i
sotropic models. This anisotropy is characterized by one parameter in the
model. We study the variation of this parameter\, describing the transitio
n between the isotropic and the anisotropic model\, analytically and numer
ically. We analyze the steady states and their stability by considering th
e particle model and the associated mean-field equations. Besides\, we pro
pose a bio-inspired model to simulate fingerprint patterns (and more gener
al any desired pattern) as stationary solutions by choosing the underlying
tensor field appropriately.\n\nhttps://conferences.maths.unsw.edu.au/even
t/2/contributions/15/
LOCATION:University of Sydney New Law School/--100
URL:https://conferences.maths.unsw.edu.au/event/2/contributions/15/
END:VEVENT
BEGIN:VEVENT
SUMMARY:On modelling biological network formation
DTSTART;VALUE=DATE-TIME:20180711T010000Z
DTEND;VALUE=DATE-TIME:20180711T013000Z
DTSTAMP;VALUE=DATE-TIME:20220819T201809Z
UID:indico-contribution-15-126@conferences.maths.unsw.edu.au
DESCRIPTION:Speakers: Helene Ranetbauer (University of Vienna)\nIn this ta
lk we present a mesoscopic model for natural network formation processes\,
acting as a bridge between a discrete and continuous network approach pro
posed by Hu and Cai. All models describe the pressure field and the dynami
cs of the conductance network under pressure force effects.\n\nWe start by
presenting the different approaches and analyze their corresponding prope
rties. We will focus on special stationary solutions of the mesoscopic mod
el including discrete network solutions. \n\nThis involves a proper reinte
rpretation of the system in terms of measure valued solutions. To overcome
the arising difficulties\, we will also introduce an alternative formulat
ion replacing the nonlinear Poisson equation for the pressure field in the
original approach by a linear side constraint.\n\nhttps://conferences.mat
hs.unsw.edu.au/event/2/contributions/126/
LOCATION:University of Sydney New Law School/--100
URL:https://conferences.maths.unsw.edu.au/event/2/contributions/126/
END:VEVENT
END:VCALENDAR