Conveners
Cell polarity and pattern formation
- Sungrim Seirin-Lee (Hiroshima University)
Description
Pattern formation is an elegant system in developmental processes and spatial patterning at different scales (e.g., nucleus, cells, and tissues) plays important roles in determining the function or fate of cell and/or tissue. In particular, cell polarity is used for regulating cell migration, cell aggregation, or cell functions by creating a spatial patterning. In this minisymposium, we focus on spatial patterning and cell polarity that occurs at several scales in cells and tissue with both theoretical and experimental approaches, and show various mathematical approaches to understand pattern formation in the life sciences.
Anterior-posterior (AP) polarity formation of cell membrane proteins plays a crucial role in determining cell asymmetry, which depends not only on the several genetic process but also biochemical and biophysical interactions. In Caenorhabditis elegans, a single fertilized egg cell (P0), its daughter cell (P1), and the germline precursors (P2 and P3 cells) form two exclusive domains of PAR...
Many cells within epithelial tissues display polarity along a particular axis. This axis is perpendicular to the tissue plane and apico-basal axis (from top to bottom of tissues) of the cell. This phenomenon is called “planar cell polarity, PCP”, and is a common phenomenon found in many multicellular organisms. For example, hair cells in the inner ear of humans have many hairs on each...
Cell division requires the precise placement of the division ring at mid-cell to ensure both daughter cells are viable. However, the mechanisms behind this localization remain poorly characterized. There are a limited number of known ways to identify the centre of the cell. One such mechanism is a Turing pattern. One intracellular Turing pattern has been identified, that produced by the Min...
During development of multicellular organisms, multiple signalling systems play important roles. However, it is very hard to understand the interplays between many signalling pathways using conventional methods of molecular biology, biochemistry and genetics. Mathematical modelling should be combined with these biological methods to solve biological problem.
The waves of differentiation in...