Conveners
Modelling gene drives
- Alun Lloyd (North Carolina State University)
- Joshua Ross (The University of Adelaide)
Description
Gene Drives are mechanisms which involve biased inheritance of a particular gene can be used to spread a desirable trait through a population. They have been proposed as a means to combat a number of diseases and pest species. However, this technology is not without controversy: beyond general concerns about the development of genetically engineered organisms (particularly GM animals), there are important issues relating to accidental release and unintended spread of gene-drive bearing individuals, as well as unintended ecological and evolutionary consequences of releases.
Mathematical modelling can be used at various stages of the development of gene drives, including testing whether a proposed construct will be able to spread in a population, estimation of invasion/containment probabilities, and consideration of potential gene drive reversal strategies. This is particularly timely due to recent advances in molecular biology (such as the CRISPR/Cas9 system) that have aided the design and development of gene drives in an ever widening range of organisms.
In this minisymposium, we will explore how modelling is intricately involved in the development of gene drive technologies and consideration of its downstream consequences, both positive and negative, in a number of contexts, including mosquito-borne diseases and control of invasive rodent species.
Gene drives are a powerful technique to reduce the size of a population or to transform it to become less troublesome. Major concerns include accidental escape of a gene drive, which might lead to widespread elimination of a species, or unintended consequences of released individuals, which might include evolution of resistance to an effector gene. Both spatial localization of a gene drive and...
Synthetically-constructed gene drives, that use CRISPR-Cas9 technology to bias inheritance of a particular gene, have been proposed for exotic pest eradication. This is a controversial idea, as there is an apparent potential risk in the use of such technologies, for example to non-target populations of the species. Further, the basic question — Is the technology actually able to achieve its...
Novel strategies for controlling mosquito vectors of human diseases involve introductions of selfish genetic elements (SGEs), or elements that spread through the mosquito population by means of non-Mendelian inheritance. The releases of the endosymbiotic bacteria Wolbachia into Aedes aegypti populations in order to reduce their capacity for arbovirus transmission are the first application...
The advent of CRISPR/Cas9-based gene editing and its demonstrated ability to streamline the development of gene drive systems has reignited interest in its application to the control of mosquitoes and the diseases they transmit. The versatility of this technology has also enabled a wide range of gene drive architectures to be realized, creating a need for their population-level and spatial...