Conveners
Mathematical and experimental approaches to understand immune response to infection: Part A
- James O'Connor (The Australian National University)
- Harshana Rajakaruna (University of Tennessee)
Mathematical and experimental approaches to understand immune response to infection: Part B
- James O'Connor (The Australian National University)
- Harshana Rajakaruna (University of Tennessee)
Description
In the last two decades, we have witnessed a rapidly increasing number of studies applying methods of mathematical modeling in immunology in general and specifically in the domain of T cell immunology. In part, this was due to the development of several quantitative and powerful techniques for detecting the dynamics of immune responses to pathogens ex-vivo, documenting cell dynamics directly in lymphoid tissues in-vivo, new methods to sequence the full T cell repertoire, and to predict T cell epitopes.
In parallel to the development of novel mathematical and computational models, this has led to better understanding of the results of these experiments, and providing a more quantitative view of the adaptive immune response. The purely theoretical models of the last decades have often been replaced by highly quantitative models that are checked on experimental in-vivo and in-vitro data in human and mice.
Here, we propose a mini-symposium to discuss these new models and their relation to novel experimental tools and the data from the perspective of both modellers and experimenters. Such minisymposium will be of interest beyond the domain of immunology.
Information analysis of amplicon sequencing of fecal samples from HIV positive individuals suggested an enrichment of a particular bacterial species in the gut microbiota, as referred to dysbiosis. Although a sufficient number of samples has already accumulated for both HIV positive and negative subjects, time-series datasets are rarely available. Hence difficulty remains in tracing the...
Age plays an important role on immunity across the lifespan, as both very young and very old individuals are at higher risk of severe infection. CD8 T cells are important for controlling a number of viral and bacterial infections, and both the number and phenotype of CD8 T cells change with age. Various mathematical and experimental methods have been used to analyse T cell kinetics, and most...
The prevention of diseases such as malaria require certain T cells to find all pathogens in the liver within a certain period of time (e.g., within 48 hours, which is the time required for liver-stage development of parasites in rodent malaria). This motivates the fundamental question of how many T cells are required to ensure complete coverage of the liver within a specified time, to a high...
CD8+ T cells can kill Plasmodium parasites in the liver of the mammalian host; a protective effect that can be harnessed for malaria vaccination. We have previously used intra-vital imaging to measure the interaction of CD8+ T cells in the liver and Plasmodium infected hepatocytes. We have previously observed that CD8+ T cells in the liver undertake LFA-1 dependent crawling motility in the...
During the adaptive immune response, T and B lymphocytes receive and integrate signals from different sources that determine the strength and type of response they follow. Here we asked how reducing stimulation strength through the CD40 receptor could lead to an accelerated division-linked B cell differentiation, as noted in an earlier study [Hawkins et al., Nat Comms 2014]. We observed...
CD8+ T (CTL) cells play a pivotal role in protection from viral infection. Better understanding of the heterogeneous phenotypes of T cell subsets evolving during an immune response is timely needed for development of T cell based vaccines that can provide long-term immune protection. Viruses causing chronic infections such as HIV and HCV, trigger a T cell response characterised by functional...