Conveners
Host-parasite coevolution in space
- Michael Boots (UC Berkeley)
- Akira Sasaki (The Graduate University for Advanced Studies (SOKENDAI))
Description
Spatial structure greatly influences the demography and evolution of organisms. This minisymposium focuses on the effect of self-structured spatial heterogeneity on the evolution of host-parasite ecological interaction and intra-host immunological interactions. Our specific focus includes multilevel selection in self-organized meta-population structure, evolutionary games played between coinfecting pathogens, host structures favouring cell-free (global) versus cell-to-cell (local) transmissions, and coevolutionary interaction between insects and their pathogens. Both experimental and empirical studies of recent plant virology and insect parasitology will be introduced to test the theoretical predictions.
Spatial structure owing to localized dispersal in hosts can have dramatic impacts upon the coevolutionary dynamics of hosts and parasites. The basic idea is that localized dispersal in hosts can lead to localized transmission, thereby selecting for costly resistance in hosts and lower virulence in parasites. Both of these evolutionary forces are grounded on the altruism (i.e., costly to the...
Most of the viral gene products are shared among a viral population in a host cell, which accumulates up to $10^6$ to $10^7$ genomes. High mutation rates in viral genome replication bring genetic variety to the intracellular population, and this makes the situation social: mutant genomes that do not code intact gene products can survive as free riders, by using the gene products from the other...
Viruses have two modes spread in a host body, one is to release infectious particles from infected cells (cell-free) and the other is to infect directly from an infected cell to an adjacent cell (cell-to-cell). Since the mode of spread affects the evolution of life history traits, such as virulence, it is important to reveal which mode is selected. Here we show the evolutionarily stable...
The impact of spatial structure on evolutionary outcomes can be profound due to both ecological and genetic correlations. One of the best developed areas of spatial evolutionary theory has focused on the coevolution of hosts and parasites. There are profound impacts of local as opposed to global infection on both parasite and host evolutionary outcomes. Using a combination of pair...