Conveners
Cellular & tissue processes
- Jun Nakabayashi (Yokohama-city University)
Tumour associated macrophages have long been implicated in the progression of primary solid malignancies including prostate cancer. Metastatic prostate cancer typically manifests in the bone where it induces painful osteogenic lesions that are incurable. Bone is naturally rich in myeloid derived macrophages whose temporal polarization into pro- (M1) and anti-inflammatory (M2) phenotypes is...
The cellular cytoskeleton ensures the dynamic transport, localization and anchoring of various proteins and vesicles. In the development of egg cells into embryos, messenger RNA (mRNA) is transported along microtubule filaments and must accumulate at the cortex of the egg cell on a certain time and spatial scale. We present two equivalent methods of deriving the effective transport properties...
Autophagy is an intracellular degradation process mediated by the autophagosome. The membrane dynamics of autophagosome formation is unique and complicated, which involves development of a small membrane cisterna into a cup-shaped structure and a double membrane spherical structure by closing the edge [1].
In this presentation, we discuss the mechanism of autophagosome formation from a...
In this presentation, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid...
Nanoparticles provide a promising approach for the targeted delivery of therapeutic, diagnostic and imaging agents in the body. However, it is not yet fully understood how the physicochemical properties of the nanoparticles influence cellular association and uptake. Cellular association experiments are routinely performed in an effort to determine how nanoparticle properties impact the rate of...
Mechanically-induced buckling underlies the shape and function of a number of biological processes, such as brain tissue folding, intestinal crypt fission, and seashell formation. Unlike many typical engineering systems in which buckling is induced by an external compressive load, mechanical instability in biology is driven often by internal growth. In these contexts, it is just as important...